Qual matéria está procurando ?

Matemática

Matemática

Posições relativas entre reta e plano

Clique e aprenda o que são posições relativas entre reta e plano e o modo como essas figuras podem interagir no espaço.

As possibilidades de interação entre uma reta e um plano são as posições relativas As possibilidades de interação entre uma reta e um plano são as posições relativas

As retas e os planos são figuras geométricas primitivas na geometria. Isso significa que elas não possuem definição, mas são de grande utilidade e importância para as outras figuras geométricas. Quando comparamos a posição de uma reta com um plano, temos três possibilidades de posições. Vamos explicar cada uma dessas possibilidades a seguir.

Reta contida no plano

Dizemos que a reta r está contida no plano α quando todos os pontos dessa reta são pontos do plano também. Assim, podemos dizer que, quando dois pontos de uma reta pertencem a um plano, essa reta está contida nesse plano. Outro detalhe importante: também podemos dizer que o plano contém a reta.


Exemplo de plano que contém todos os pontos de uma reta

Reta e plano concorrentes

Uma reta r é chamada concorrente ao plano α quando as duas figuras geométricas possuem apenas um ponto em comum. Também é possível dizer que reta e plano são concorrentes quando a reta toca, corta ou intercepta o plano em apenas um ponto. Quando isso acontece, pode-se dizer que a reta é secante ao plano.

Exemplo de reta secante ao plano
Exemplo de reta secante ao plano

Atenção: não é possível que uma reta toque o plano em dois pontos e não pertença a ele. Isso aconteceria apenas no caso de retas que fazem curvas, entretanto, essas retas não existem.

Reta e plano perpendiculares

Esse não é uma possibilidade exclusiva de posição relativa entre reta e plano, mas é um caso de muita importância. Dizemos que uma reta r e um plano α são perpendiculares quando toda reta, que passa pelo ponto de intersecção A da reta r com o plano α, é perpendicular a r.


Exemplo de plano cujas retas que passam por A são perpendiculares a r

Entretanto, se for possível encontrar duas retas que passam por A, perpendiculares entre si e perpendiculares a r, então, r é perpendicular a α.

Reta e plano paralelos

A reta r é paralela ao plano α quando as duas figuras não possuem nenhum ponto em comum. Para verificar se uma reta r é paralela a um plano α, basta encontrar uma reta contida nesse plano que seja paralela à reta r.


Exemplo de reta r paralela à reta s contida no plano


Por Luiz Paulo Moreira
Graduado em Matemática

 


Videoaula relacionada:

Por Luiz Paulo Moreira Silva

Você pode se interessar também

Matemática

Adição e subtração de números negativos com reta numérica

Matemática

Distância entre dois pontos

Matemática

Figuras planas

Matemática

Fractais

Últimos artigos

Conceitos geográficos

Os conceitos geográficos são a base teórica da Geografia. Eles são muito importantes para o entendimento do meio e da forma como se dão as relações entre o ser humano e a natureza.

Sexta-feira Santa

Sexta-feira Santa é uma importante data do calendário cristão, sendo parte da Semana Santa e do Tríduo Pascal. Essa data relembra o dia da crucificação de Jesus.

Meridiano de Greenwich

O Meridiano de Greenwich, que marca 0º de longitude, é fundamental para o sistema de coordenadas geográficas. Serve também de referência para determinar os fusos horários.

Quaresma

A Quaresma é um período, tradicionalmente, de 40 dias que é marcado como um momento de devoção e de penitência e que se inicia na Quarta-Feira de Cinzas.