Qual matéria está procurando ?

Matemática

Matemática

Produtos notáveis

Clique e aprenda a calcular cinco produtos notáveis mais importantes para a álgebra e descubra uma técnica para encontrá-los facilmente.

Entre os produtos notáveis, estão o quadrado da soma, o quadrado da diferença e o produto da soma pela diferença Entre os produtos notáveis, estão o quadrado da soma, o quadrado da diferença e o produto da soma pela diferença

Produtos notáveis são as cinco multiplicações mais usadas entre polinômios. Os resultados desses produtos são muito comuns e encontrados na solução de diversos problemas, tanto na forma de polinômio quanto na de equação do segundo grau. Os cinco produtos notáveis mais importantes são: quadrado da soma, quadrado da diferença, produto da soma pela diferença, cubo da soma e cubo da diferença.

Os produtos notáveis podem ser usados como fórmulas para calcular potências envolvendo polinômios. Para compreender esse uso, é necessário discutir essas “fórmulas” e o modo como elas são criadas.

Quadrado da soma

O produto notável conhecido como quadrado da soma sempre pode ser colocado na forma a seguir:

(x + a)2

Observe que elevar essa soma ao quadrado é o mesmo que calcular a seguinte multiplicação:

(x + a)(x + a)

Usando a propriedade distributiva da multiplicação sobre a adição – mais conhecida como “chuveirinho” – obtemos:

(x + a)(x + a) =

x2 + xa + ax + a2

Somando os termos semelhantes, temos:

x2 + xa + ax + a2 =

x2 + 2ax + a2

Note que, comparando esse resultado ao produto notável inicial, podemos concluir que:

O quadrado do primeiro termo,
somado a duas vezes o primeiro, vezes o segundo termo,
somado ao quadrado do segundo termo,
é igual ao quadrado da soma.

Essa é a regra que deve ser memorizada, caso queira evitar de fazer esses cálculos em todos os quadrados da soma.

Quadrado da diferença

O quadrado da diferença é semelhante ao quadrado da soma, a única diferença é que o resultado terá um sinal negativo, de acordo com os cálculos a seguir. O quadrado da diferença é o produto notável que pode ser escrito na seguinte forma:

(x – a)2

Para encontrar o resultado desse quadrado, basta escrevê-lo na forma de produto e usar a propriedade distributiva, assim como o que foi feito no caso anterior.

(x – a)(x – a) = x2 – ax – xa + a2

Somando os termos semelhantes do resultado, obtemos:

x2 – 2xa + a2

Esse resultado pode ser interpretado da seguinte maneira:

O quadrado do primeiro termo,
menos duas vezes o primeiro, vezes o segundo termo,

somado ao quadrado do segundo termo,
é igual ao quadrado da diferença.

Produto da soma pela diferença

Esse produto notável sempre pode ser escrito na forma de produto entre uma soma e uma diferença, como no exemplo:

(x + a)(x – a)

Aplicando a propriedade distributiva, temos:

(x + a)(x – a) = x2 – xa + ax – a2

Fazendo a adição dos termos semelhantes, obtemos:

x2 – xa + ax – a2 = x2 – a2

Esse resultado pode ser lido da seguinte maneira:

O quadrado do primeiro termo,
menos o quadrado do segundo termo,

é igual ao produto da soma pela diferença

Cubo da soma

O produto notável conhecido como cubo da soma sempre pode ser escrito na seguinte forma:

(x + a)3

Para calcular o resultado do cubo da soma, basta escrevê-lo como produto de três polinômios e usar a propriedade distributiva. Observe:

(x + a)3

(x + a)(x + a)(x + a)

(x + a)(x2 + 2ax + a2)

x3 + 2ax2 + xa2 + ax2 + 2a2x + a3

Feito isso, basta somar os termos semelhantes:

x3 + 2ax2 + xa2 + ax2 + 2a2x + a3

x3 + 3ax2 + 3a2x + a3

Observe que esse resultado pode ser lido da seguinte maneira:

O cubo do primeiro termo,
somado a três vezes o quadrado do primeiro termo, vezes o segundo termo,
somado a três vezes o primeiro termo, vezes o quadrado do segundo termo,
somado ao cubo do segundo termo.

Cubo da diferença

O produto notável conhecido como cubo da diferença é aquele que pode ser escrito da seguinte maneira:

(x – a)3

A solução desse produto notável é dada multiplicando “x – a” por si mesmo três vezes:

(x – a)(x – a)(x – a)

(x – a)(x2 – 2ax + a2)

x3 – 2ax2 + xa2 – ax2 + 2a2x – a3

x3 – 3ax2 + 3a2x – a3

Então, esse resultado pode ser lido da seguinte maneira:

O cubo do primeiro termo,
menos três vezes o quadrado do primeiro termo, vezes o segundo termo,
somado a três vezes o primeiro termo, vezes o quadrado do segundo termo,
menos o cubo do segundo termo.





Aproveite para conferir nossa videoaula sobre o assunto:

Por Luiz Paulo Moreira Silva

Você pode se interessar também

Matemática

Monômios

Matemática

Multiplicação

Matemática

Multiplicação de monômios

Matemática

Operação da Multiplicação

Últimos artigos

Eva Furnari

Eva Furnari é uma famosa escritora brasileira. Seus livros são divertidos e apresentam personagens mais complexos. O livro Felpo Filva é uma de suas obras mais conhecidas.

Reticências

As reticências são um sinal de pontuação que funciona como uma pequena pausa, usado para criar um efeito especial de hesitação ou de suspense na fala ou na narração.

Brasil Império

O Brasil Império foi o período em que o Brasil foi governado por uma monarquia constitucional. Nesse período, o Brasil teve dois imperadores: Dom Pedro I e Dom Pedro II.

7 Maravilhas do Mundo Antigo

As 7 Maravilhas do Mundo Antigo eram obras arquitetônicas e artísticas extraordinárias que representavam o ápice da engenhosidade e da cultura das civilizações antigas.