Matemática

Fórmula de Bhaskara

Clique para aprender a utilizar a fórmula de Bhaskara para resolver ou encontrar raízes de uma equação do segundo grau!

As raízes de uma equação do segundo grau são os valores em que seu gráfico toca o eixo x

A fórmula de Bhaskara é um método utilizado para resolver equações do segundo grau. Resolver uma equação do segundo grau é o mesmo que encontrar os valores de x para os quais a equação seja igual a zero. Para isso, as equações devem ser escritas em sua forma normal ou reduzida, como na imagem a seguir:


Forma normal ou reduzida de uma equação do segundo grau

Para utilizar a fórmula de Bhaskara, é necessário, em um primeiro momento, separar os coeficientes da equação. Esses serão os números utilizados nos cálculos, e a incógnita (número desconhecido representado pela letra x) será ignorada. Os coeficientes de uma equação do segundo grau são: “a”, que é o número que multiplica x2; “b”, que é o número que multiplica x; e “c”, que é o número fixo e que não multiplica incógnita. Por exemplo, dada a equação 2x2 – 5x + 6 = 0, os coeficientes são: a = 2, b = – 5 e c = 6.

Após separar os coeficientes, partimos para o uso da fórmula de Bhaskara em si. Para isso, substitua os valores numéricos dos coeficientes na fórmula e realize as operações indicadas por ela.


Fórmula de Bhaskara em sua forma completa

A expressão acima é a fórmula de Bhaskara em sua forma completa. Contudo, seus cálculos são feitos em duas etapas para evitar erros e facilitar o entendimento do método.

Primeiro passo: calcular o valor do discriminante

Geralmente representado por D ou pela letra grega Δ (delta), esse discriminante é o valor numérico (resultado) da expressão encontrada dentro da raiz quadrada presente na fórmula de Bhaskara. Portanto, o discriminante é dado pela expressão:


Fórmula do discriminante

Para calcular esse valor, substitua os valores numéricos dos coeficientes na fórmula e realize as operações resultantes na mesma ordem que qualquer expressão numérica.

Por exemplo, dada a equação 2x2 + 12x – 14 = 0, calcule o valor de Δ.

a = 2, b = 12 e c = –14

Δ = b2 – 4ac

Δ = 122 – 4·2·(– 14)

Δ = 144 – 8·(– 14)

Δ = 144 + 112

Δ = 256

Segundo passo: calcular as raízes da equação do segundo grau.

Lembrando que raiz é o valor de x para o qual a equação é igual a zero. Esse valor pode ser encontrado por meio da seguinte expressão:

Para isso, substitua os valores numéricos dos coeficientes e de Δ na fórmula acima.

Por exemplo, dada a equação 2x2 + 12x – 14 = 0, sabemos que a = 2, b = 12, c = –14 e que Δ = 256. Substituindo esses valores na fórmula de Bhaskara, teremos:

x = – b ± √Δ
      2·a

x = – 12 ± √256
       2·2

x = – 12 ± 16
     4

Nesse passo, note a presença do símbolo “±”. Esse símbolo indica que existem dois resultados possíveis a serem calculados, um para o valor de √Δ negativo e outro para o valor de √Δ positivo. Esses dois valores são chamados de x' e x''. Observe a continuação dos cálculos do exemplo.

x' = – 12 + 16
       4

x' = 4
      4

x' = 1

x'' = – 12 – 16
        4

x'' = – 28
        4

x'' = – 7

Exemplo 2: Calcule as raízes da equação 2x2 – 10x + 8 = 0

Utilizando o primeiro passo, vamos calcular o valor de Δ

a = 2, b = – 10 e c = 8

Δ = b2 – 4ac

Δ = (– 10)2 – 4·2·8

Δ = 100 – 8·8

Δ = 100 – 64

Δ = 36

Utilizando o segundo passo, vamos calcular as raízes da equação:

x = – b ± √Δ
     2·a

x = – (– 10) ± √36
       2·2

x = 10 ± 6
      4

x' = 10 + 6
       4

x' = 16
      4

x' = 4

x'' = 10 – 6
      4

x'' = 4
       4

x'' = 1

Portanto, as raízes da equação 2x2 – 10x + 8 = 0 são x' = 4 e x'' = 1.


Por Luiz Paulo Moreira
Graduado em Matemática



Aproveite para conferir nossa videoaula sobre o assunto:

Por Luiz Paulo Moreira Silva

Versão completa